Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-163294

ABSTRACT

Aims: To develop block copolymer crosslinked nanoassemblies (CNAs) that co-entrap an imaging dye (Acridine Yellow: AY) and therapeutic agent (doxorubicin: DOX) as novel nanoparticle drug carriers for a combined application of drug delivery-based therapy and diagnostic imaging technologies (theranostics). Study Design: Physicochemical properties of AY-CNAs, such as molecular weight, particle size, surface charge, drug entrapment yield, and drug release profiles, were characterized prior to determining intracellular uptake profile, in vitro cytotoxicity, and in vivo tissue distribution patterns of the particles. Place and Duration of Study: Department of Pharmaceutical Sciences (University of Kentucky), between June 2012 and January 2013. Methodology: The AY-crosslinked CNAs (CNAs) were synthesized from biocompatible poly(ethylene glycol)-poly(aspartate) block copolymers by using AY as a crosslinker while DOX was physically entrapped in the particle through an ionic interaction. AY-CNAs and AY-CNAs with DOX were characterized to determine their particle properties (molecular weight, size, and optical properties), intracellular uptake and cytotoxicity in an in vitro cell culture system using human colon HT29 and lung A549 cancer cell lines, and tissue accumulation and tumor-preferential drug delivery efficiency ex vivo with a xenograft mouse tumor model. Results: AY-CNAs maintained nanoscale particle sizes (< 20 nm), fluorescence optical properties, and negative surface charge before and after drug entrapment. AY-CNAs with DOX were confirmed to kill cancer cells as effectively as free drug formulations, and to enhance intracellular uptake in vitro and tumor accumulation ex vivo. Conclusion: These results demonstrate that block copolymer nanoassemblies crosslinked with an imaging dye are promising platforms for the development of theranostic nanoparticle drug carriers.

2.
Article in English | IMSEAR | ID: sea-151377

ABSTRACT

facile and reliable method to perform pilot pharmacokinetic (PK) and biodistribution studies is necessary for expediting the overall development and clinical translation of novel nanoparticle drug carriers. In this study, we compared two common analytical techniques, fluorescence spectrometry using a microplate reader and liquid chromatography/mass spectrometry (LC/MS), demonstrating the quantification of a model anticancer drug (doxorubicin: DOX) in its free drug and nanoparticle formulations in vivo. Drug-loaded nanoparticle formulations were prepared from poly(ethylene glycol)-poly(aspartate) block copolymers, which formed two model drug carriers with different particle stability, self-assembled polymer micelles (DOX-micelles) and cross-linked nanoassemblies (DOX-CNAs). These three DOX formulations were injected into tumor-bearing mice at a DOX equivalent concentration. DOX levels in liver, spleen, and tumors were found to be comparable regardless of the analytical methods. LC/MS showed lower serum level than spectrometry with a microplate reader, which is consistent with the fact that DOX metabolites are present mainly in the serum.These results demonstrate that, in comparison to the LC/MS method, spectrometry using a microplate reader would be a viable and more facile method to perform pilot PK and biodistribution studies of various potential nanoparticle drug carriers using DOX as a model drug.

SELECTION OF CITATIONS
SEARCH DETAIL